机器学习及其matlab实现—从基础到实践_MATLAB 入门基础到进阶视频教程_附课程源码
近年来,随着人工智能的发展,机器学习已经广泛应用于各行各业中,如语言识别、文 本分类、智能推荐、网络安全、物联网等。然而,对于绝大部分非数学专业出身的人而言, 谈到机器学习,就会被大量的数学公式吓到退避三舍。实际上,随着计算机与信息技术的快 速发展,越来越多的人仅需要会使用机器学习这一工具即可,无需了解各种机器学习算法的 细枝末节。正如,我们每天都在使用计算机,但是我们不需要了解 CPU 和内存在每一时刻 的具体运行过程。因此,我们推出本课程,旨在帮助学员了解各种常见机器学习算法的原理与思想,同时,以具体案例的形式,引导学员自己动手实践编程。 考虑到众多学员基础不一,本次课程将会分成三大部分:MATLAB 入门基础与提高、机器学习基础和具体案例实践。 课程目录: 第一课:MATLAB 入门基础 1、简单介绍 MATLAB 的安装、版本历史与编程环境 2、MATLAB 基础操作(包括矩阵操作、逻辑与流程控制、函数与脚本文件、基本绘图等) 3、文件导入(mat、txt、xls、csv 等格式) 第二课:MATLAB 进阶与提高 1、MATLAB 编程习惯与风格 2、MATLAB 调试技巧 3、向量化编程与内存优化 4、图形对象和句柄 第三课:BP 神经网络 1、BP神经网络的基本原理 2、BP神经网络的 MATLAB 实现 3、案例实践 4、BP神经网络参数的优化 第四课:RBF、GRNN 和 PNN 神经网络 1、RBF 神经网络的基本原理 2、GRNN 神经网络的基本原理 3、PNN 神经网络的基本原理 4、案例实践 第五课:竞争神经网络与 SOM 神经网络 1、竞争神经网络的基本原理 2、自组织特征映射(SOM)神经网络的基本原理 3、案例实践 第六课:支持向量机(Support Vector Machine, SVM) 1、SVM 分类的基本原理 2、SVM 回归拟合的基本原理 3、SVM 的常见训练算法(分块、SMO、增量学习等) 4、案例实践 第七课:极限学习机(Extreme Learning Machine, ELM) 1、ELM 的基本原理 2、ELM 与 BP 神经网络的区别与联系 3、案例实践 第八课:决策树与随机森林 1、决策树的基本原理 2、随机森林的基本原理 3、案例实践 第九课:遗传算法(Genetic Algorithm, GA) 1、遗传算法的基本原理 2、常见遗传算法工具箱介绍 3、案例实践 第十课:粒子群优化(Particle Swarm Optimization, PSO)算法 1、粒子群优化算法的基本原理 2、案例实践 第十一课:蚁群算法(Ant Colony Algorithm, ACA) 1、粒子群优化算法的基本原理 2、案例实践 第十二课:模拟退火算法(Simulated Annealing, SA) 1、模拟退火算法的基本原理 2、案例实践 第十三课:降维与特征选择 1、主成分分析的基本原理 2、偏最小二乘的基本原理 3、常见的特征选择方法(优化搜索、Filter 和 Wrapper 等)
1.本站大部分内容均收集于网络!若内容若侵犯到您的权益,请发送邮件至:duhaomu@163.com,我们将第一时间处理!
2.资源所需价格并非资源售卖价格,是收集、整理、编辑详情以及本站运营的适当补贴,并且本站不提供任何免费技术支持。
3.所有资源仅限于参考和学习,版权归原作者所有,更多请阅读网站声明。